Distribution of 5-HT$_3$, 5-HT$_4$, and 5-HT$_7$ Receptors Along the Human Colon

Nor S Yaakob, Kenneth A Chinkwo, Navinisha Chetty, Ian M Coupar, and Helen R Irving

Background/Aims
Several disorders of the gastrointestinal tract are associated with abnormal serotonin (5-HT) signaling or metabolism where the 5-HT$_3$ and 5-HT$_4$ receptors are clinically relevant. The aim was to examine the distribution of 5-HT$_3$, 5-HT$_4$, and 5-HT$_7$ receptors in the normal human colon and how this is associated with receptor interacting chaperone 3, G protein coupled receptor kinases, and protein LIN-7 homologs to extend previous observations limited to the sigmoid colon or the upper intestine.

Methods
Samples from ascending, transverse, descending, and sigmoid human colon were dissected into 3 separate layers (mucosa, longitudinal, and circular muscles) and ileum samples were dissected into mucosa and muscle layers (n = 20). Complementary DNA was synthesized by reverse transcription from extracted RNA and expression was determined by quantitative or end point polymerase chain reaction.

Results
The 5-HT$_3$ receptor subunits were found in all tissues throughout the colon and ileum. The A subunit was detected in all samples and the C subunit was expressed at similar levels while the B subunit was expressed at lower levels and less frequently. The 5-HT$_3$ receptor E subunit was mainly found in the mucosa layers. All splice variants of the 5-HT$_4$ and 5-HT$_7$ receptors were expressed throughout the colon although the 5-HT$_4$ receptor d, g, and i variants were expressed less often.

Conclusions
The major differences in 5-HT receptor distribution within the human colon are in relation to the mucosa and muscular tissue layers where the 5-HT$_3$ receptor E subunit is predominantly found in the mucosal layer which may be of therapeutic relevance.

Key Words
Colon; G protein coupled receptor kinases; Ileum; Receptors, serotonin

Received: December 22, 2014 Revised: March 31, 2015 Accepted: April 5, 2015

© This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Correspondence: Helen R Irving, PhD
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), 381 Royal Parade, Parkville, VIC 3052, Australia
Tel: +61-3-9903-9565, Fax: +61-3-9903-9581, E-mail: helen.irving@monash.edu

Financial support: None.
Conflicts of interest: None.

Author contributions: Ian M Coupar and Helen R Irving conceived and designed the study; Nor S Yaakob, Kenneth A Chinkwo, Navinisha Chetty, and Helen R Irving were involved in designing the experiments, acquiring, analysing, and interpreting data; Helen R Irving drafted the manuscript; and all authors were involved in critically revising the manuscript.

Introduction

Most of the body serotonin stores are found in the gastrointestinal tract, where abnormalities in serotonin release, transport and metabolism are associated with dyspepsia, nausea and vomiting, coeliac disease, inflammatory bowel disease, and irritable bowel syndrome (IBS). Inflammation contributes to these disorders due to underlying inflammatory states in coeliac disease and inflammatory bowel disease and in part because it modulates serotonin levels.

The serotonin (5-HT) 4 receptor is expressed in several different cell types in the human colon where it stimulates intestinal activity (i.e., prokinetic action) and is a target for treating constipation predominant IBS (IBS-C) and chronic constipation. The 5-HT4 receptor partial agonist, tegaserod was used for treatment of IBS-C until withdrawn in 2007 as it was associated with rare adverse cardiovascular effects. Currently, the high affinity 5-HT4 receptor agonist, prucalopride is used to treat chronic or idiopathic constipation refractory to at least two other classes of laxatives in the European Union, Canada, and Australia. Intestinal 5-HT3 receptors are often located near 5-HT4 receptors where they augment 5-HT induced responses. 5-HT3 receptor antagonists decrease colonic motility, secretion and nociception and are used to treat diarrhea predominant IBS (IBS-D). The 5-HT3 receptor is a ligand gated ion channel composed of 5 subunits that form homomeric (all 3A subunits) or heteromeric (mixture of 3A and 3B, 3C, 3D, or 3E subunits) functionally active channels. All of the human 5-HT3 receptor subunit genes are expressed in the gastrointestinal tract. Immunohistochemistry studies have pinpointed co-expression of A, B, C, D, and E subunits in enterocytes and also the nerves of the myenteric plexus indicating that heteromeric 5-HT3 receptors are likely to form in the human colon.

Although 5-HT4 and 5-HT7 receptor splice variants have been identified in separate studies in the small intestine and colon, no study has looked at their tissue distribution along the colon. However, one earlier study showed that the 5-HT3 receptor subunit transcript distribution differed in the sigmoid colon providing evidence that specific subunits may be potential targets. Therefore the aim of this study was to investigate the distribution of transcripts of 5-HT receptors and their associated proteins in the ileum and along the length of the colon. Membrane bound receptors are subject to strict processing to be positioned correctly and to regulate their responsiveness following activation. Homologous desensitization involving the G protein coupled receptor (GPCR) kinases (GRKs) down regulates surface coupled expression of 5-HT4 receptors. Proteins such as protein LIN-7 (LIN7) homolog A to C of Caenorhabditis elegans (also known as Veli 1-3 in mammals) are likely to be involved in processing 5-HT4 and 5-HT7 receptors to the plasma membrane. Receptor interacting chaperone 3 (RIC3) assists cell surface assembly of 5-HT3 receptors. Therefore, transcripts of RIC3, LIN7 homologs, and GRKs were measured as these proteins contribute to receptor processing. Although subtle differences in distribution of the receptors and associated proteins occurred along the colon, only the 5-HT3 receptor subunits exhibited any major differences in expression between the tissue layers which may be of therapeutic relevance.

Materials and Methods

Human Tissue

Full thickness specimens from different regions of the intestine of 24 patients (11 male and 13 female ranging in age from 50 to 88 years [median 73]) were collected immediately following surgical resection and transported to the laboratory in 4°C Krebs-Henseleit solution. The patients were undergoing surgical resection for colonic cancer and the pathologist indicated that the specimens obtained as far from the tumor as possible appeared to be disease free following gross visual examination. The mucosa and associated mesentery plus fat were removed before the longitudinal muscle bands (taeniae coli) were dissected and the remaining intertaenial tissue was cut into strips in the orientation of the circular smooth muscle. All tissue was stored in RNA later at −80°C. The project was approved by the Human Research Ethics Committee of the hospital and academic institute and all patients gave informed consent prior to surgery.

RNA Extraction

Approximately 18-25 mg excised tissue was homogenized using a PRO 200 homogenizer (PRO Scientific Inc, Oxford, CT, USA) and total RNA was extracted using RNaseasy Fibrous kit (Qiagen, Chadstone Center, Victoria, Australia) and Turbo DNA-free Kit (Life Technologies, Mulgrave, Victoria, Australia) was used to degrade any contaminating DNA. RNA was quantified pre and post-DNase treatment with a Nanodrop 1000 using ND-1000 software (Thermo Scientific, Wilmington,
The reverse transcription step was carried out using 1 μg of DNAse-treated RNA, SuperScript®III Reverse Transcriptase (Life Technologies) and oligo dT15 primers in a total reaction volume of 20 μL. Separate negative reverse-transcriptase controls were included for every reaction.

Polymerase Chain Reaction Conditions

In endpoint polymerase chain reactions (PCR), the primers described in a prior study were used to amplify GRK, 5-HT4, and 5-HT7 receptor genes while the following primers were used to amplify LIN7A-C and glyceraldehyde dehydrogenase (GAPDH) genes. GAPDH (NM_002046.5) forward 5'-ACCACAGTC-CATGCCATCAC-3' (714-734) and reverse 5'-TCCACAC-CCTGTGTGCTGA-3' (1165-1146); LIN7A (NM_004664.2) forward 5'-CAGCTATGAGGCCACCTCC-3' (486-505) and reverse 5'-GCAGCTGGTCTCCTCTTTTG-3' (659-639); LIN7B (NM_022165.2) forward 5'-CACGGTTATGACCGCTGGA-3' (210-229) and reverse 5'-GATGACCCGG-GAGATGT-3' (413-397); LIN7C (NM_018362.3) forward 5'-AACAGAAGAGGGCCTTGGAT-3' (516-496) and reverse 5'-GCGGCTTTCAGCAGTTCTAC-3' (321-340) which will produce products of 451 (for all 4 splice variants), 174, 203, and 195 bp respectively. It should be noted that the LIN7A primer set is within one exon. Amplifications were undertaken in a MyCycler thermal cycler (Bio-Rad Laboratories, Inc, Hercules, CA, USA) and a hot start involving 15 minutes at 94°C was made. To keep within an exponential range during amplification, 20 to 25 cycles were made with denaturation at 94°C, annealing at 55°C, and extension at 72°C all for 1 minute. Products were visualized following separation on agarose gels and staining with GelRed™ nucleic acid stain (Biotium, Hayward, CA, USA).

Quantitative PCR was undertaken using similar amplification conditions as described in a prior study except that the 30 μL reactions contained 1 μL cDNA, 0.5 μmol/L forward and reverse primers, 4 mmol/L MgCl2, and 2X SensiMix SYBR Green PCR Master Mix (Bioline, Sydney, NSW, Australia). The cDNA was amplified by 1 cycle at 95°C for 15 minutes followed by 36 cycles of 95°C for 15 seconds (denaturating), 55°C for 20 seconds (annealing), and 72°C for 25 seconds (extension) using a C1000™ Thermal Cycler and CFX96™ Real-Time System (Bio-Rad Laboratories). Melting point analysis indicated that only a single product was produced in each reaction and confirmed by preliminary runs with gel electrophoresis which also established that only one product of the predicted size was produced. Control runs of all PCR experiments contained non-template controls and negative reverse transcriptase controls consisting of RNA samples where reverse transcriptase was not added (such that no cDNA was produced) to test for DNA contamination.

Statistical Methods

Each quantitative PCR sample was analyzed in duplicate and efficiency of reactions was determined using linear regression of the Log (fluorescence) per cycle number data with the LinRegPCR program and ranged from 2.008 ± 0.006 (β-actin) to 1.877 ± 0.008 (5-HT1 receptor C subunit [HTR3C]). Expression data was calculated relative to β-actin and GAPDH and expressed as the following ratio: Ratio = (Efficiencyreference)Ct reference/(Efficiencysample)Ct sample, where Ct is the crossing point threshold of the sample for the amplified genes.

Relative expression data was further analyzed after log transformation using one-way ANOVA followed by Tukey’s multiple comparisons test. One-way ANOVA and Tukey’s multiple comparisons were used to analyze the number of patients expressing genes detected using endpoint PCR. The number of observations used to derive mean values is expressed by n and arithmetic mean values are given as mean ± SEM.

Results

Distribution of 5-HT3 Receptor Subunits in the Human Intestine

The distribution of 5-HT3 receptor subunits was examined using quantitative reverse transcript PCR on samples obtained from throughout the length of the colon and the ileum area of the small intestine. In all regions, expression was examined in both the mucosal and muscular tissue layers and reported relative to expression of β-actin. GAPDH was used as a second housekeeping gene for comparison with a previous study where the relative expression of the 5-HT3 receptors in the sigmoid colon was reported. Control RNA samples incubated without reverse transcriptase and then amplified with GAPDH primers were also undertaken to demonstrate that there was no DNA contamination of the RNA extractions (data not shown). GAPDH levels of expression were consistently and significantly higher than those of the 5-HT3 receptor subunits or RIC3 in both ileum and colon (P < 0.05 one-way ANOVA; Fig. 1) which is consistent with the previous study. The 5-HT3 receptor D subunit
Figure 1. Distribution of serotonin type 3 (5-HT$_3$) receptor subunits and receptor interacting chaperone 3 (RIC3) transcripts in human intestinal tissue layers. (A) Comparison of the relative expression levels of transcripts of RIC3 and 5-HT$_3$ receptor subunits in the mucosal and muscle tissue layers in the human ileum (n = 4). (B) Comparison of the relative expression levels of transcripts of RIC3 and 5-HT$_3$ receptor subunits in the mucosal and muscle layers (circular and longitudinal) in tissue samples obtained from throughout the human colon (n = 16). Data are expressed as a ratio relative to β-actin as described in the Material and Methods section. Bars indicate the mean. 5-HT$_3$ receptor D subunit (HTR3D) transcripts were not detected in any tissue tested. RIC3 and 5-HT$_3$ receptor subunit transcripts are expressed at significantly lower levels than glyceraldehyde dehydrogenase (GAPDH) transcripts (P < 0.001 one-way ANOVA followed by Tukey's multiple comparisons test) in all tissues. The letters above the x-axis (v, w, x, y, and z representing the highest to lowest level respectively) indicate that the transcripts are found at significantly different levels (P < 0.05 one-way ANOVA followed by Tukey's multiple comparisons test) in the ileum or colon tissue layers (i.e., transcripts in the different layers with an x underneath are expressed at the same level; x is the highest and z the lowest level in [A] while v is the highest and z the lowest level in [B]).

was consistently not detected in either ileum or colon samples which is in agreement with prior studies where transcripts of HTR3D were only evident at very low levels.23,25 In the ileum, RIC3 and 5-HT$_3$ receptor A subunit transcripts were found in all samples with the other subunits being less prevalent (Fig. 1A). Transcript levels of RIC3 were significantly higher than 5-HT$_3$ receptor B subunit transcripts in both mucosa and muscle layers and also the mucosal levels of the A subunit and the C subunit in the muscle layer. No significant differences were observed in the expression levels of the 5-HT$_3$ receptor subunits with the major exception that the E subunit was only found in the mucosal layer (Fig. 1A).

The colonic tissue was dissected into mucosa, circular, and longitudinal muscular layers and a similar distribution of the specific transcripts occurred in the different areas (Supplementary Fig. 1). Therefore, the regional data was pooled to see if there were any differences in gene expression at the tissue layer level (Fig. 1B). Generally a similar distribution pattern of RIC3 and the 5-HT$_3$ receptor subunits in the colonic tissue layers was observed to that seen in the ileum. However some variations were seen in 5-HT$_3$ receptor subunit expression between the different tissue layers (Fig. 1B). The 5-HT$_3$ receptor B subunit was expressed at significantly lower levels than RIC3 or the A subunits in all tissue layers. The mucosal levels of the C subunit were significantly higher than the B subunit in any tissue and the C subunit in the muscular layers. The 5-HT$_3$ receptor E subunit transcripts were nearly always only detected in the mucosa samples at levels significantly greater than the B subunit (Fig. 1B). Only one longitudinal muscle sample showed any E subunit expression (Fig. 1B), so to determine if the 5-HT$_3$ receptor E subunit was expressed in the muscle layers but below the reliable detection levels of the quantitative PCR conditions, the amplified PCR samples were run in gels (Supplementary Fig. 2). Only very low levels of expression were observed in two additional colon mucosa samples and two longitudinal muscle samples as well as an additional ileum muscle sample.

Distribution of 5-HT$_4$ and 5-HT$_7$ Receptors in the Human Intestine

Adjacent tissue samples to those used in the analysis of the 5-HT$_3$ receptor and RIC3 gene expression were used to examine the distribution of 5-HT$_4$ and 5-HT$_7$ receptors. Since several splice variants with overlapping 3’ coding regions exist for the 5-HT$_4$ and 5-HT$_7$ receptors, their distribution was examined us-
Figure 2. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis of expression of protein LIN-7 homologs G protein coupled receptor kinase (GRK), serotonin type 4 (5-HT4) and 5-HT7 receptor gene products in the human descending colon of one patient. The products of predicted sizes are indicated by arrows and the size was correlated to 100 bp (molecular weight) markers run on 1.5% agarose gels stained with GelRed. A negative control is shown for the LIN7A sample as the primers are within one exon. Letters represent samples obtained from M (mucosa), C (circular muscle), and L (longitudinal muscle).

Discussion

Despite many similarities in its general functionality, the human intestinal tract exhibits considerable differences to small animal models such as mice, rats, and guinea pigs.41 Serotonin receptors for instance are widespread throughout the gastrointestinal tract in small animal models and humans but the proportion and type of receptors at particular regions are different.41-43 In addition, human 5-HT receptors are considerably different in their composition as evident by the diverse splice variants in 5-HT4 and 5-HT7 receptors and the additional 5-HT3 receptor.
Figure 3. Comparison of the number of patients expressing transcripts of G protein coupled receptor kinase (GRK), protein LIN-7 (LIN7) homologs, and 5-HT4 or 5-HT7 receptor splice variants in the mucosal (A), circular muscle (B), and longitudinal muscle (C) layers in tissue samples obtained from throughout the human colon (n = 16-18). Data are expressed as the number of patients where transcripts were detected. 5-HT4 receptor d and g splice variants in mucosa and longitudinal muscle, GRK5 and GRK6 (all tissue layers) were detected at significantly lower frequencies than 5-HT7 or 5-HT4 a, b, c, or n receptor splice variants (P < 0.05 one-way ANOVA followed by Tukey’s multiple comparisons test).

The function and pharmacological responses of 5-HT receptors in the intestine also varies between small animal models and humans and therefore this study was undertaken to gain an insight to the distribution of 5-HT3, 5-HT4, and 5-HT7 receptors expressed in the human ileum and throughout the human colon. Although subtle differences in the regional distribution of the 5-HT receptors occurred, the main differences were between the mucosal and muscular tissue layers.

Quantitative and end point PCR were used to assess the distribution of 5-HT3, 5-HT4, and 5-HT7 receptors using samples obtained from surgical resection that appeared to be disease free following gross visual examination. Tissue samples were stored in RNAlater at −80°C until use. Only samples that contained readily detectable levels of GAPDH (and β-actin for quantitative PCR) and were not contaminated by genomic DNA (no bands detected in the negative reverse transcript assays) were processed further to exclude the probability of undetectable expression due to storage-related RNA degradation (Supplementary Fig. 3). The robustness of the quantitative PCR was ensured by adhering to the MIQE guidelines and samples were run on gels to ensure that only the expected products were generated (Supplementary Fig. 2). The end point PCR studies were designed to ensure that the products were still within the linear amplification range. Where expression levels were low (eg, 5-HT4 receptor splice variant d; Fig. 2), independent observers confirmed the presence of detectable bands in the gels.

The distribution of 5-HT3 receptor A subunits is in keeping with previous studies where this subunit was widespread and thought to reflect the distribution of functional 5-HT3 receptor subunits. The HTR3B gene which encodes for the canonical 5-HT3 receptor B subunit was expressed at lower levels than HTR3A in all regions of colon but at similar levels in the ileum (Fig. 1). The actual occurrence of HTR3B in human colon and ileum (Supplementary Fig. 1) was almost 50% less than
The total occurrences of HTR3A and agrees with previous findings where lower levels but no distinct patterns of expression were observed. Interestingly, the expression and occurrence of the 5-HT3 receptor C subunit was similar to HTR3A while HTR3E was predominantly restricted to the mucosa confirming prior observations in the colon, small intestine and stomach. The mucosa plays a role in fluid transport, while the muscular layers are involved with motility so it is possible that physiological alterations in the different colon tissue layers may result in selective colon disease or dysfunction. Immunoreactants to both 5-HT3 receptor C and E subunits have been identified as being co-expressed within the human colon (enterocytes, myenteric plexus and muscular layer). Together these findings are suggestive that associations of 5-HT receptor A subunits occur with C and/or E subunits in the gastrointestinal tissues. In fact, genetic studies have revealed associations of HTR3C and HTR3E with several clinical conditions. Interestingly, a single nucleotide polymorphism in the 5-HT1 receptor E subunit that is associated with female IBS-D where the 5-HT1 receptor subunit is up-regulated by microRNA (miR-510) co-expressed with the E subunit in gut epithelium enterocytes.

The 5-HT4 receptor splice variants have different preferences to ligands as shown by different potency and binding affinities for various 5-HT receptors. 5-HT4 receptor transcripts have been identified in human mucosa biopsies obtained from the duodenum, ileum and colon and this mucosal expression contributes to luminal responses in model animal systems. There are no significant patterns in the expression of 5-HT4 or 5-HT7 receptors although the number of patients expressing the 5-HT1 receptor d and g splice variants is consistently lower (Fig. 3). The 5-HT4 receptor d splice variant in particular has been shown to have low expression levels before in different parts of the body such as the central nervous system. It would be of interest to learn if changes in distribution of 5-HT4 receptor splice variants occur in gastrointestinal disorders as the 5-HT1 receptor a and b splice variants are down regulated while the d variant is upregulated in adenomas. The 5-HT7 receptor splice variants in this study were expressed in all of the different tissue layers. The overall expression patterns of 5-HT1 and 5-HT7 receptors are in accordance with their known functional properties in the human colon to regulate ascending contraction and descending relaxation to generate peristaltic reflexes resulting in bowel movement. 5-HT7 receptors are also found on macrophages and have been implicated as a potential target for treating intestinal inflammatory disorders.

Serotonin induces desensitization (tachyphylaxis) at different rates and magnitudes in different tissues and this is the case with 5-HT3 receptor agonists as highlighted by prucalopride desensitizing pig atrium but not pig stomach 5-HT3 receptors. Different GRKs are associated with 5-HT4 receptor desensitization depending on the tissue type in the rat and significantly these GRKs are not necessarily those predicted by studies using re-combinant proteins expressed in cell culture. GRK2 and GRK3 were relatively well distributed in all tissue layers while GRK5 was less common and GRK6 was absent in the ileum but present in the descending and sigmoid colon, so there may be regional and tissue layer variation in the GRKs involved in 5-HT4 receptor desensitization in the human colon. The distribution of LIN7 homologs in the human colon is of interest as LIN7C (Veli 3) has been shown to interact with the 5-HT4 receptor splice variant. In the human intestine, all 3 LIN7 homologues were present in the different tissue regions except the region of the transverse colon tissue layers. However, detection of the LIN7 homologues may be limited by their occurrence at pre-synaptic (axonal) and postsynaptic (dendritic) subcellular compartments.

In conclusion, this study demonstrates that the major differences in the localization of 5-HT receptors within the human colon are in relation to the mucosa and muscular tissue rather than the region of the intestine. The fact that the study proteins are distributed along the intestine, only serves to emphasize how dominant the receptors and their associated proteins are, and so any dysfunction of one is likely to manifest seriously in clinical conditions. Only minor differences were observed in the distribution of 5-HT1 and 5-HT7 receptors and their splice variants. Differences in the distribution of 5-HT1 receptor subunits were evident with A, B, and C subunits occurring in all tissues whereas the E subunit was only significantly observed in the mucosal layer. The findings suggest that it may be possible to target 5-HT3 receptors in the mucosal or muscular layers if subunit specific molecules can be generated to cater for different colon diseases or dysfunction.

Supplementary Materials

Note: To access the supplementary table and figures mentioned in this article, visit the online version of Journal of Neurogastroenterology and Motility at http://www.jnmjournal.org/, and at http://dx.doi.org/10.5056/jnm14157.
References

34. Bohl J, Brimer N, Lyons C, Vande Pol SB. The Stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. J

